
Lecture 7
Separate compilation

Computing platforms
Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

The problem

• In previous lecture we learned how to create subroutines.
• There are many kinds of subroutines good for reuse, like

multiplication, division, string operations, etc
• How to actually do the reusing?

Solutions: #include statement

• Not present in CdM-8 assembler
• Slow on big programs
• Not an issue for CdM-8
• But bad for real computers

• label name conflicts (“name space pollution”)
• What happens if several modules have conlicting asect directives?

Separate compilation and linking

• Historically, was invented independently and slightly before of
assembler
• Now, assemblers and linkers are considered a tightly-coupled

elements of toolchain
• By default, assembler produces not a final memory image, but some

intermediate format, known as object file
• Linker collects several object files and links them into final memory

image (executable file)

History of linkers and library routines

• Code reuse was introduced by Grace Hopper in 1944 when
programming a Harvard Mark I computer (aka IBM ASCC)
• Mark I was a sequential (not von Neumann) computer
• Sequential computer program contains no addresses
• Only way to implement a loop is to unroll it

(like we did with multiplication routine in prev. lecture)
• No conditional statements nor while loops
• You could insert a subroutine in any point of the program, provided

that it matches a calling convention

Subroutines on von Neumann computers

• On von Neumann computer, programs contain addresses
(in assembler they are label references)
• To relocate program in memory, we must recalculate these addresses
• When programming early von Neumann computers (EDVAC, UNIVAC)

people tried to recalculate addresses manually, but this took time and
produced many errors
• Then, Grace Hopper come with the idea of linker or link editor

– a program tool to recalculate addresses in library routines
• It was one of the first programs to aid in writing programs

So, let’s go back to CdM-8

• We must avoid using asect directive. We cannot link modules with
asects mapping on the same address
• We must designate some labels as externally visible

(similar to extern in C)

rsect directive

Let us consider these in detail. Since the assembler already supports labels as a form of symbolic address,
and that is used broadly to label data in dc and space in ds pseudo-instructions, what is required is the
ability to declare some of the labels entry points, or ents for short, and to allow them to survive compilation
for use as addresses by other separately compiled parts. In other words, the result of compiling, which will
be called the object file from now on, will, under separate compilation, have to include a list of ents with
their associated addresses.

Here we encounter the first difficulty: the actual memory addresses of the entry points are unknown to the
assembler, because it only compiles a single part of the program at a time and has no access to the rest. It
is the totality of the parts that will eventually define which part goes where in memory, not a single part on
its own. The only information about an ent that is available to the assembler is its position relative to other
address in the same contiguous block of code. In other words, the assembler knows offsets associated with
labels, not their actual memory addresses (ones we called ‘absolute’ addresses in asects).

7.1.1 Relocatable sections

Consequently, it is common practice to arrange a separately compiled part of a program into a collection
of relocatable sections, or r-sects for short. Each r-sect represents a contiguous address segment which is
also named. R-sect names are used as anchoring points for addressing but are also useful for diagnostics
purposes, i.e. to be able to identify a specific r-sect in which a linking error has occurred. Each r-sect
employs a relative address space, which starts from 0. Any label in that address space is categorised as
relocatable, i.e. one to be adjusted when the r-sect is finally allocated a specific range of memory addresses.
In the process of allocation, the starting memory address of the range is added to every relative address in
the section to obtain its actual address in memory.

Externally visible labels, the ents, are included in the object file as a table listing labels against relative
addresses in their r-sect. If a part contains several r-sects, the object module will contain several such
tables2.

Ents are syntactically defined as labels terminated by the angular bracket > rather than a colon. Here is an
example of two r-sects in a part:

CdM-8 Assembler v2.1 <<<multdiv.asm>>> 13/08/2015 22:38:26

1 #################### section mul, contain 2 subs
2 rsect mul
3 mul>
4 # computes product of r0 and r1, result goes in r1
5

00: c2 6 save r2
01: 3a 7 clr r2

8 while
02: 00 9 tst r0
03: ed 09 10 stays gt
05: 16 11 add r1, r2
06: 88 12 dec r0
07: ee 02 13 wend
09: 09 14 move r2,r1
0a: c6 15 restore
0b: d7 16 rts

17

2 Absolute sections may also declare ents, but those are marked as absolute and are treated separately.

164

rsect directive

• Creates a named relative (relocatable) section
• All labels in this section belong to it
• Some labels can be declared as externally visible
• In CdM-8 this is done by using ‘>’ character instead of ’:’
• Other assemblers use wide range of other syntaxes
• Most typical is a directive ‘global’ which declares a label to be global

• A file can contain several rsects
• More on this later

• R-sect cannot span several files
• In other assemblers it can

Main program

The above is the assembler listing of a source file containing two r-sects, mul and div. A program that
links to this part may reference one to three entries: mul,smul and/or div. The assembler session summary
found between the double lines above shows the entries in the aforementioned form: the name of an r-sect
coupled with a hexadecimal offset. Notice that the current address (shown at the beginning of the line in the
assembler listing and separated from the rest of the line by a semicolon) drops from 1f to 00 on line 43 as we
enter a new r-sect. Also notice that the main program can limit its use of the other part by only referring to
div or to one or both subroutines for multiplication. In such a case the memory needed to accommodate the
unused r-sect will be available for other uses. It is, however, impossible to utilise the space allocated to smul
if only unsigned multiplication is required, mul, since an r-sect can either be linked to the main program as
a whole or not linked at all.

Another interesting feature of r-sects is the fact that the address constants in one contain relative addresses
(for the simple reason that the eventual memory addresses are not known at the compilation stage). This
means that the object file should include information about where these constants are located in the object
file bit-string so that when the section is allocated space for, it can also be adjusted by adding to those
constants in it the starting address of the section. This information is presented for the programmer’s
inspection in the assembler summary above, under the heading SECTIONS3. For example, the instruction
wend in the section mul at relative addresses 07-08 includes a pointer to relative address 02. The pointer
points to the while instruction and is used for closing the loop. However, the address 02 shown in it is a
relative address. If the section is allocated at address, say, 34, the pointer should point at address 34+2 = 36.
The adjustment will be done at the allocation/linking stage using the information provided by the assembler
in the object file, which is also shown in the assembler summary. The process of adjusting the pointers after
allocating a range of addresses for an r-sect is called pointer relocation, or just relocation for short. Let us
now turn to a separately compiled main program, the user of the above subroutines. Here is one example of
how it can be written:

CdM-8 Assembler v2.1 <<<test.asm>>> 18/06/2017 21:58:41

1 # compute -3x+7,
2 asect 0
3 smul: ext # declare smul as an external label
4 # to be defined by an ent elsewhere

00: d0 0b 5 ldi r0,x
02: b0 6 ld r0,r0
03: d1 fd 7 ldi r1,-3
05: d6 00 8 jsr smul
07: d0 07 9 ldi r0,7
09: 11 10 add r0,r1
0a: d4 11 halt
0b: 11 12 x: dc 17 # example value for testing

13 end

==

SECTIONS:
Name Size Relocation offsets

ENTRIES:
Section Name/Offset

$abs <NONE>

EXTERNALS:
Name Used in

smul $abs+06

3 Bear in mind that all addresses and data displayed by the assembler in addition to the source code are presented in hex

166

What linker does with sections

• First, it allocates a place for asect
• Several asect directives with different start addresses are threated as

a single non-contiguous asect
• Second, it finds a places for referenced R-sects
• R-sects with no references are excluded from linking
• Third, it relocates R-sects to their places (recalculates addresses)
• Fourth, it writes values of external labels to places where they are

referenced (a linking in a strict sence)

A picture

asect 0
smul:ext

rsect mul
mul>
smul>

rsect div
div>

asect 0
smul:ext

rsect mul
mul>
smul>

smul

CdM-8 object file (source and file itself)
10 2. LINKER

CdM -8 Assembler v2.0 <<<exobj.asm >>> 23/05/2015 15:22:29

1 asect 0xe0

e0: 03 2 my > dc 3

3 q>

e1: d2 e1 4 ldi r2,q

5 rsect foo

00: 10 6 bar > add r0 ,r0

01: d4 7 halt

8 rsect main

00: 71 9 main > cmp r0 ,r1

01: e8 04 10 bhi z3

03: d5 11 wait

04: d4 12 z3: halt

13 end

==

SECTIONS:

Name Size Relocation offsets

main 05 02

foo 02

ENTRIES:

Section Name/Offset

$abs q:e1 my:e0

main main :00

foo bar :00

EXTERNALS:

Name Used in

==

The object file generated by the assembler:

ABS e0: 03 d2 e1

NTRY q e1

NTRY my e0

NAME main

DATA 71 e8 04 d5 d4

REL 02

NTRY main 00

NAME foo

DATA 10 d4

REL

NTRY bar 00

2.2 Running the linker

The linker can be run from the command line (UNIX or Mac OS X) as follows:

cocol [-h] [-l] [-a] [-r] [-s] objfile [objfile ...]

10 2. LINKER

CdM -8 Assembler v2.0 <<<exobj.asm >>> 23/05/2015 15:22:29

1 asect 0xe0

e0: 03 2 my > dc 3

3 q>

e1: d2 e1 4 ldi r2,q

5 rsect foo

00: 10 6 bar > add r0 ,r0

01: d4 7 halt

8 rsect main

00: 71 9 main > cmp r0 ,r1

01: e8 04 10 bhi z3

03: d5 11 wait

04: d4 12 z3: halt

13 end

==

SECTIONS:

Name Size Relocation offsets

main 05 02

foo 02

ENTRIES:

Section Name/Offset

$abs q:e1 my:e0

main main :00

foo bar:00

EXTERNALS:

Name Used in

==

The object file generated by the assembler:

ABS e0: 03 d2 e1

NTRY q e1

NTRY my e0

NAME main

DATA 71 e8 04 d5 d4

REL 02

NTRY main 00

NAME foo

DATA 10 d4

REL

NTRY bar 00

2.2 Running the linker

The linker can be run from the command line (UNIX or Mac OS X) as follows:

cocol [-h] [-l] [-a] [-r] [-s] objfile [objfile ...]

What is REL 02 record?

• It is so called relocation entry.
• Let’s look at this more closely
NAME main
DATA 71 e8 04 d5 d4
REL 02
• Rel 02 points to address field

of bhi z3 instruction
• This field must be recalculated

when R-sect is relocated

10 2. LINKER

CdM -8 Assembler v2.0 <<<exobj.asm >>> 23/05/2015 15:22:29

1 asect 0xe0

e0: 03 2 my > dc 3

3 q>

e1: d2 e1 4 ldi r2,q

5 rsect foo

00: 10 6 bar > add r0 ,r0

01: d4 7 halt

8 rsect main

00: 71 9 main > cmp r0 ,r1

01: e8 04 10 bhi z3

03: d5 11 wait

04: d4 12 z3: halt

13 end

==

SECTIONS:

Name Size Relocation offsets

main 05 02

foo 02

ENTRIES:

Section Name/Offset

$abs q:e1 my:e0

main main :00

foo bar:00

EXTERNALS:

Name Used in

==

The object file generated by the assembler:

ABS e0: 03 d2 e1

NTRY q e1

NTRY my e0

NAME main

DATA 71 e8 04 d5 d4

REL 02

NTRY main 00

NAME foo

DATA 10 d4

REL

NTRY bar 00

2.2 Running the linker

The linker can be run from the command line (UNIX or Mac OS X) as follows:

cocol [-h] [-l] [-a] [-r] [-s] objfile [objfile ...]

Relocation table

• Every R-sect has a relocation table
• In CdM-8 object format it is just list of REL records belonging to a R-

sect
• Every REL record is a reference to an address that needs to be

relocated (recalculated) according to the actual position of the
section
• Some R-sects can have empty relocation table

How it really works

• When assembling a file, assembler creates:
• a symbol table
• List of all symbols (labels) together with their values

• A cross-reference table
• List of all places in the code where a specific symbol is referenced

• During a separate compilation, assembler cannot fully build a symbol
table
• For external references, it doesn’t know anything about a symbol
• For references to labels in R-sects, you know their offset, but not a

final value

Placeholders

• For all references to unresolved symbols, assembler creates
• A placeholder in the code
• For relocatable symbols, placeholder contains offset from the R-sect start
• For external symbols, placeholder can contain anything
• A reference in cross-reference table (REL for relocatable symbols, XTRN for

external)

• When resolving external symbols, linker adds symbol value to the
placeholder (this allows references like mul+10)
• When resolving relocatable symbols, linker adds section start to the

offset

