Lecture /
Separate compilation

Computing platforms

Novosibirsk State University
University of Hertfordshire

D. Irtegov, A.Shafarenko
2018

The problem

* In previous lecture we learned how to create subroutines.

* There are many kinds of subroutines good for reuse, like
multiplication, division, string operations, etc

* How to actually do the reusing?

Solutions: #include statement

* Not present in CdM-8 assembler

* Slow on big programs
* Not an issue for CdM-8
e But bad for real computers

* [abel name conflicts (“name space pollution”)
* What happens if several modules have conlicting asect directives?

Separate compilation and linking

* Historically, was invented independently and slightly before of
assembler

* Now, assemblers and linkers are considered a tightly-coupled
elements of toolchain

* By default, assembler produces not a final memory image, but some
intermediate format, known as object file

* Linker collects several object files and links them into final memory
image (executable file)

History of linkers and library routines

* Code reuse was introduced by Grace Hopper in 1944 when
programming a Harvard Mark | computer (aka IBM ASCC)

* Mark | was a sequential (not von Neumann) computer
* Sequential computer program contains no addresses

* Only way to implement a loop is to unroll it
(like we did with multiplication routine in prev. lecture)

* No conditional statements nor while loops

* You could insert a subroutine in any point of the program, provided
that it matches a calling convention

Subroutines on von Neumann computers

* On von Neumann computer, programs contain addresses
(in assembler they are label references)

* To relocate program in memory, we must recalculate these addresses

* When programming early von Neumann computers (EDVAC, UNIVAC)
people tried to recalculate addresses manually, but this took time and
produced many errors

* Then, Grace Hopper come with the idea of linker or link editor
— a program tool to recalculate addresses in library routines

* It was one of the first programs to aid in writing programs

So, let’s go back to CdM-8

* We must avoid using asect directive. We cannot link modules with
asects mapping on the same address

* We must designate some labels as externally visible
(similar to extern in C)

rsect directive

HAHHHHHH AR H SR HHA#HH#H#A section mul, contain 2 subs

00:
01:

02:
03:
05:
06:
07:
09:
Oa:
Ob:

c2
3a

00
ed
16
88
ee
09
c6
d7

09

02

© 00 NO O b WN -

N S Y = T e = ==
~N O O b WN - O

mul>
#

rsect mul
computes product of rO and rl, result goes in rl

save r2
clr r2
while
tst r0
stays gt
add rl1, r2
dec r0
wend
move r2,rl
restore
rts

rsect directive

* Creates a named relative (relocatable) section
 All labels in this section belong to it
* Some labels can be declared as externally visible

* In CdM-8 this is done by using ‘>’ character instead of ":’

e Other assemblers use wide range of other syntaxes
* Most typical is a directive ‘global” which declares a label to be global

* A file can contain several rsects
* More on this later

* R-sect cannot span several files
* In other assemblers it can

Main program

00:
02:
03:
05:
07:
09:
Oa:
Ob:

do
b0
dl
d6
do
11
d4
11

Ob

fd
00
07

O© 00 NO Ol WDN -

T
w N~ O

compute -3x+7,

smul :

asect O
ext

1di
1d
1di
jsr
1di
add
halt
dc
end

r0,x
r0,r0
rl,-3
smul
r0,7
r0,rl

17

declare smul as an external label
to be defined by an ent elsewhere

example value for testing

What linker does with sections

* First, it allocates a place for asect

e Several asect directives with different start addresses are threated as
a single non-contiguous asect

e Second, it finds a places for referenced R-sects
e R-sects with no references are excluded from linking
 Third, it relocates R-sects to their places (recalculates addresses)

* Fourth, it writes values of external labels to places where they are
referenced (a linking in a strict sence)

A picture

asect O
smul:ext

rsect div

div>

rsect mul
mul>

smul>

asect O
smul:ext

rsect mul
mul>
smul>

smul

CdM-8 object file (source and file itself)

e0:

el:

00:
01:

00:
01:
03:
04:

03

d2

10
d4

71

d5
d4

el

04

00 ~NO OV WN -

my >

bar >

main >

z3:

asect O0xeO
dc 3

1di r2,q
rsect foo
add r0,r0
halt

rsect main
cmp rO,ril
bhi z3

wait

halt

end

ABS

NTRY
NTRY
NAME
DATA
REL

NTRY
NAME
DATA
REL

NTRY

e0: 03 d2 el

q el

my €O

main

71 e8 04 db5 d4
02

main 0O

foo

10 d4

bar 00

What is REL 02 record?

* It is so called relocation entry.
* Let’s look at this more closely
NAME main

DATA 71 e8 04 d5 d4

REL 02

* Rel 02 points to address field
of bhi z3 instruction

* This field must be recalculated
when R-sect is relocated

e0:

el:

00:
01:

00:
01:
03:
04:

03

d2

10
d4

71

db
d4

el

04

00 ~NO O WN -

my >

bar>

main >

z3:

asect OxeO
dc 3

1di r2,q
rsect foo
add r0,r0
halt

rsect main
cmp rO,ril
bhi z3
wait

halt

end

Relocation table

* Every R-sect has a relocation table

* In CdM-8 object format it is just list of REL records belonging to a R-
sect

* Every REL record is a reference to an address that needs to be
relocated (recalculated) according to the actual position of the
section

* Some R-sects can have empty relocation table

How it really works

* When assembling a file, assembler creates:

* a symbol table
* List of all symbols (labels) together with their values

* A cross-reference table
* List of all places in the code where a specific symbol is referenced

* During a separate compilation, assembler cannot fully build a symbol
table

* For external references, it doesn’t know anything about a symbol

* For references to labels in R-sects, you know their offset, but not a
final value

Placeholders

* For all references to unresolved symbols, assembler creates
* A placeholder in the code
* For relocatable symbols, placeholder contains offset from the R-sect start
* For external symbols, placeholder can contain anything

» A reference in cross-reference table (REL for relocatable symbols, XTRN for
external)

* When resolving external symbols, linker adds symbol value to the
placeholder (this allows references like mul+10)

* When resolving relocatable symbols, linker adds section start to the
offset

